Integral dari $$$\operatorname{sech}^{2}{\left(u \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \operatorname{sech}^{2}{\left(u \right)}\, du$$$.
Solusi
Integral dari $$$\operatorname{sech}^{2}{\left(u \right)}$$$ adalah $$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$$:
$${\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}} = {\color{red}{\tanh{\left(u \right)}}}$$
Oleh karena itu,
$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$
Tambahkan konstanta integrasi:
$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}+C$$
Jawaban
$$$\int \operatorname{sech}^{2}{\left(u \right)}\, du = \tanh{\left(u \right)} + C$$$A