Integral dari $$$\sec^{2}{\left(\theta \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sec^{2}{\left(\theta \right)}\, d\theta$$$.
Solusi
Integral dari $$$\sec^{2}{\left(\theta \right)}$$$ adalah $$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\tan{\left(\theta \right)}}}$$
Oleh karena itu,
$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}$$
Tambahkan konstanta integrasi:
$$\int{\sec^{2}{\left(\theta \right)} d \theta} = \tan{\left(\theta \right)}+C$$
Jawaban
$$$\int \sec^{2}{\left(\theta \right)}\, d\theta = \tan{\left(\theta \right)} + C$$$A