Integral dari $$$\pi \sin{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \pi \sin{\left(x \right)}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\pi$$$ dan $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\pi \sin{\left(x \right)} d x}}} = {\color{red}{\pi \int{\sin{\left(x \right)} d x}}}$$
Integral dari sinus adalah $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\pi {\color{red}{\int{\sin{\left(x \right)} d x}}} = \pi {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Oleh karena itu,
$$\int{\pi \sin{\left(x \right)} d x} = - \pi \cos{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\pi \sin{\left(x \right)} d x} = - \pi \cos{\left(x \right)}+C$$
Jawaban
$$$\int \pi \sin{\left(x \right)}\, dx = - \pi \cos{\left(x \right)} + C$$$A