Integral dari $$$\frac{\tan{\left(x \right)}}{23}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\tan{\left(x \right)}}{23}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{23}$$$ dan $$$f{\left(x \right)} = \tan{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\tan{\left(x \right)}}{23} d x}}} = {\color{red}{\left(\frac{\int{\tan{\left(x \right)} d x}}{23}\right)}}$$
Tulis ulang tangen sebagai $$$\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}$$$:
$$\frac{{\color{red}{\int{\tan{\left(x \right)} d x}}}}{23} = \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}}{23}$$
Misalkan $$$u=\cos{\left(x \right)}$$$.
Kemudian $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sin{\left(x \right)} dx = - du$$$.
Jadi,
$$\frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} d x}}}}{23} = \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{23}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{23} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{23}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{23} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{23}$$
Ingat bahwa $$$u=\cos{\left(x \right)}$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{23} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{23}$$
Oleh karena itu,
$$\int{\frac{\tan{\left(x \right)}}{23} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{23}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\tan{\left(x \right)}}{23} d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}}{23}+C$$
Jawaban
$$$\int \frac{\tan{\left(x \right)}}{23}\, dx = - \frac{\ln\left(\left|{\cos{\left(x \right)}}\right|\right)}{23} + C$$$A