Integral dari $$$\frac{1}{x \ln\left(x\right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{1}{x \ln\left(x\right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{1}{x \ln\left(x\right)}\, dx$$$.

Solusi

Misalkan $$$u=\ln{\left(x \right)}$$$.

Kemudian $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{x} = du$$$.

Integral tersebut dapat ditulis ulang sebagai

$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Ingat bahwa $$$u=\ln{\left(x \right)}$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}$$

Oleh karena itu,

$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}$$

Tambahkan konstanta integrasi:

$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}+C$$

Jawaban

$$$\int \frac{1}{x \ln\left(x\right)}\, dx = \ln\left(\left|{\ln\left(x\right)}\right|\right) + C$$$A


Please try a new game Rotatly