Integral dari $$$\cos{\left(n x \right)}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \cos{\left(n x \right)}\, dx$$$.
Solusi
Misalkan $$$u=n x$$$.
Kemudian $$$du=\left(n x\right)^{\prime }dx = n dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{n}$$$.
Jadi,
$${\color{red}{\int{\cos{\left(n x \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{n} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{n}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{n} d u}}} = {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{n}}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{n} = \frac{{\color{red}{\sin{\left(u \right)}}}}{n}$$
Ingat bahwa $$$u=n x$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{n} = \frac{\sin{\left({\color{red}{n x}} \right)}}{n}$$
Oleh karena itu,
$$\int{\cos{\left(n x \right)} d x} = \frac{\sin{\left(n x \right)}}{n}$$
Tambahkan konstanta integrasi:
$$\int{\cos{\left(n x \right)} d x} = \frac{\sin{\left(n x \right)}}{n}+C$$
Jawaban
$$$\int \cos{\left(n x \right)}\, dx = \frac{\sin{\left(n x \right)}}{n} + C$$$A