Integral dari $$$9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}$$$ terhadap $$$x$$$

Kalkulator akan menemukan integral/antiturunan dari $$$9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}$$$ terhadap $$$x$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int 9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}\, dx$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=9 i n t$$$ dan $$$f{\left(x \right)} = \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}$$$:

$${\color{red}{\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}}} = {\color{red}{\left(9 i n t \int{\sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}\right)}}$$

Tulis ulang integran:

$$9 i n t {\color{red}{\int{\sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x}}} = 9 i n t {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}}$$

Misalkan $$$u=\sin{\left(x \right)}$$$.

Kemudian $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\cos{\left(x \right)} dx = du$$$.

Oleh karena itu,

$$9 i n t {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = 9 i n t {\color{red}{\int{\frac{1}{u} d u}}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$9 i n t {\color{red}{\int{\frac{1}{u} d u}}} = 9 i n t {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Ingat bahwa $$$u=\sin{\left(x \right)}$$$:

$$9 i n t \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 9 i n t \ln{\left(\left|{{\color{red}{\sin{\left(x \right)}}}}\right| \right)}$$

Oleh karena itu,

$$\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x} = 9 i n t \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}$$

Tambahkan konstanta integrasi:

$$\int{9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} d x} = 9 i n t \ln{\left(\left|{\sin{\left(x \right)}}\right| \right)}+C$$

Jawaban

$$$\int 9 i n t \sin{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)}\, dx = 9 i n t \ln\left(\left|{\sin{\left(x \right)}}\right|\right) + C$$$A


Please try a new game Rotatly