Integral dari $$$\frac{68}{r}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{68}{r}\, dr$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(r \right)}\, dr = c \int f{\left(r \right)}\, dr$$$ dengan $$$c=68$$$ dan $$$f{\left(r \right)} = \frac{1}{r}$$$:
$${\color{red}{\int{\frac{68}{r} d r}}} = {\color{red}{\left(68 \int{\frac{1}{r} d r}\right)}}$$
Integral dari $$$\frac{1}{r}$$$ adalah $$$\int{\frac{1}{r} d r} = \ln{\left(\left|{r}\right| \right)}$$$:
$$68 {\color{red}{\int{\frac{1}{r} d r}}} = 68 {\color{red}{\ln{\left(\left|{r}\right| \right)}}}$$
Oleh karena itu,
$$\int{\frac{68}{r} d r} = 68 \ln{\left(\left|{r}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{68}{r} d r} = 68 \ln{\left(\left|{r}\right| \right)}+C$$
Jawaban
$$$\int \frac{68}{r}\, dr = 68 \ln\left(\left|{r}\right|\right) + C$$$A