Integral dari $$$5880 i n t^{8} - 1$$$ terhadap $$$t$$$

Kalkulator akan menemukan integral/antiturunan dari $$$5880 i n t^{8} - 1$$$ terhadap $$$t$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(5880 i n t^{8} - 1\right)\, dt$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(5880 i n t^{8} - 1\right)d t}}} = {\color{red}{\left(- \int{1 d t} + \int{5880 i n t^{8} d t}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dt = c t$$$ dengan $$$c=1$$$:

$$\int{5880 i n t^{8} d t} - {\color{red}{\int{1 d t}}} = \int{5880 i n t^{8} d t} - {\color{red}{t}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=5880 i n$$$ dan $$$f{\left(t \right)} = t^{8}$$$:

$$- t + {\color{red}{\int{5880 i n t^{8} d t}}} = - t + {\color{red}{\left(5880 i n \int{t^{8} d t}\right)}}$$

Terapkan aturan pangkat $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=8$$$:

$$5880 i n {\color{red}{\int{t^{8} d t}}} - t=5880 i n {\color{red}{\frac{t^{1 + 8}}{1 + 8}}} - t=5880 i n {\color{red}{\left(\frac{t^{9}}{9}\right)}} - t$$

Oleh karena itu,

$$\int{\left(5880 i n t^{8} - 1\right)d t} = \frac{1960 i n t^{9}}{3} - t$$

Tambahkan konstanta integrasi:

$$\int{\left(5880 i n t^{8} - 1\right)d t} = \frac{1960 i n t^{9}}{3} - t+C$$

Jawaban

$$$\int \left(5880 i n t^{8} - 1\right)\, dt = \left(\frac{1960 i n t^{9}}{3} - t\right) + C$$$A


Please try a new game Rotatly