Integral dari $$$2 \sin{\left(2 t \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$2 \sin{\left(2 t \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int 2 \sin{\left(2 t \right)}\, dt$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ dengan $$$c=2$$$ dan $$$f{\left(t \right)} = \sin{\left(2 t \right)}$$$:

$${\color{red}{\int{2 \sin{\left(2 t \right)} d t}}} = {\color{red}{\left(2 \int{\sin{\left(2 t \right)} d t}\right)}}$$

Misalkan $$$u=2 t$$$.

Kemudian $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dt = \frac{du}{2}$$$.

Oleh karena itu,

$$2 {\color{red}{\int{\sin{\left(2 t \right)} d t}}} = 2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = 2 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$

Integral dari sinus adalah $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Ingat bahwa $$$u=2 t$$$:

$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\left(2 t\right)}} \right)}$$

Oleh karena itu,

$$\int{2 \sin{\left(2 t \right)} d t} = - \cos{\left(2 t \right)}$$

Tambahkan konstanta integrasi:

$$\int{2 \sin{\left(2 t \right)} d t} = - \cos{\left(2 t \right)}+C$$

Jawaban

$$$\int 2 \sin{\left(2 t \right)}\, dt = - \cos{\left(2 t \right)} + C$$$A


Please try a new game Rotatly