Integral dari $$$12 x - 12$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(12 x - 12\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(12 x - 12\right)d x}}} = {\color{red}{\left(- \int{12 d x} + \int{12 x d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=12$$$:
$$\int{12 x d x} - {\color{red}{\int{12 d x}}} = \int{12 x d x} - {\color{red}{\left(12 x\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=12$$$ dan $$$f{\left(x \right)} = x$$$:
$$- 12 x + {\color{red}{\int{12 x d x}}} = - 12 x + {\color{red}{\left(12 \int{x d x}\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$$- 12 x + 12 {\color{red}{\int{x d x}}}=- 12 x + 12 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 12 x + 12 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Oleh karena itu,
$$\int{\left(12 x - 12\right)d x} = 6 x^{2} - 12 x$$
Sederhanakan:
$$\int{\left(12 x - 12\right)d x} = 6 x \left(x - 2\right)$$
Tambahkan konstanta integrasi:
$$\int{\left(12 x - 12\right)d x} = 6 x \left(x - 2\right)+C$$
Jawaban
$$$\int \left(12 x - 12\right)\, dx = 6 x \left(x - 2\right) + C$$$A