Integral dari $$$\frac{1}{x \ln\left(x^{3}\right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{1}{x \ln\left(x^{3}\right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{1}{3 x \ln\left(x\right)}\, dx$$$.

Solusi

Masukan ditulis ulang: $$$\int{\frac{1}{x \ln{\left(x^{3} \right)}} d x}=\int{\frac{1}{3 x \ln{\left(x \right)}} d x}$$$.

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{3}$$$ dan $$$f{\left(x \right)} = \frac{1}{x \ln{\left(x \right)}}$$$:

$${\color{red}{\int{\frac{1}{3 x \ln{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x \ln{\left(x \right)}} d x}}{3}\right)}}$$

Misalkan $$$u=\ln{\left(x \right)}$$$.

Kemudian $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{x} = du$$$.

Jadi,

$$\frac{{\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}}}{3} = \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$

Ingat bahwa $$$u=\ln{\left(x \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = \frac{\ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}}{3}$$

Oleh karena itu,

$$\int{\frac{1}{3 x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}}{3}$$

Tambahkan konstanta integrasi:

$$\int{\frac{1}{3 x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}}{3}+C$$

Jawaban

$$$\int \frac{1}{3 x \ln\left(x\right)}\, dx = \frac{\ln\left(\left|{\ln\left(x\right)}\right|\right)}{3} + C$$$A


Please try a new game Rotatly