Integral dari $$$\frac{1}{\sqrt[3]{x} + x}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{1}{\sqrt[3]{x} + x}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{1}{\sqrt[3]{x} + x}\, dx$$$.

Solusi

Misalkan $$$u=\sqrt[3]{x}$$$.

Kemudian $$$du=\left(\sqrt[3]{x}\right)^{\prime }dx = \frac{1}{3 x^{\frac{2}{3}}} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{x^{\frac{2}{3}}} = 3 du$$$.

Dengan demikian,

$${\color{red}{\int{\frac{1}{\sqrt[3]{x} + x} d x}}} = {\color{red}{\int{\frac{3 u}{u^{2} + 1} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=3$$$ dan $$$f{\left(u \right)} = \frac{u}{u^{2} + 1}$$$:

$${\color{red}{\int{\frac{3 u}{u^{2} + 1} d u}}} = {\color{red}{\left(3 \int{\frac{u}{u^{2} + 1} d u}\right)}}$$

Misalkan $$$v=u^{2} + 1$$$.

Kemudian $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$u du = \frac{dv}{2}$$$.

Integralnya menjadi

$$3 {\color{red}{\int{\frac{u}{u^{2} + 1} d u}}} = 3 {\color{red}{\int{\frac{1}{2 v} d v}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(v \right)} = \frac{1}{v}$$$:

$$3 {\color{red}{\int{\frac{1}{2 v} d v}}} = 3 {\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}$$

Integral dari $$$\frac{1}{v}$$$ adalah $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{3 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Ingat bahwa $$$v=u^{2} + 1$$$:

$$\frac{3 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{3 \ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$

Ingat bahwa $$$u=\sqrt[3]{x}$$$:

$$\frac{3 \ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} = \frac{3 \ln{\left(1 + {\color{red}{\sqrt[3]{x}}}^{2} \right)}}{2}$$

Oleh karena itu,

$$\int{\frac{1}{\sqrt[3]{x} + x} d x} = \frac{3 \ln{\left(x^{\frac{2}{3}} + 1 \right)}}{2}$$

Tambahkan konstanta integrasi:

$$\int{\frac{1}{\sqrt[3]{x} + x} d x} = \frac{3 \ln{\left(x^{\frac{2}{3}} + 1 \right)}}{2}+C$$

Jawaban

$$$\int \frac{1}{\sqrt[3]{x} + x}\, dx = \frac{3 \ln\left(x^{\frac{2}{3}} + 1\right)}{2} + C$$$A


Please try a new game Rotatly