Integral dari $$$\frac{1}{\cos{\left(x \right)} + 1}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{\cos{\left(x \right)} + 1}\, dx$$$.
Solusi
Tulis ulang kosinus menggunakan rumus sudut ganda $$$\cos\left(x\right)=2\cos^2\left(\frac{x}{2}\right)-1$$$ dan sederhanakan:
$${\color{red}{\int{\frac{1}{\cos{\left(x \right)} + 1} d x}}} = {\color{red}{\int{\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}} d x}}}$$
Misalkan $$$u=\frac{x}{2}$$$.
Kemudian $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = 2 du$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{2}{\left(u \right)}} d u}}}$$
Tulis ulang integran dalam bentuk fungsi sekan.:
$${\color{red}{\int{\frac{1}{\cos^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\sec^{2}{\left(u \right)} d u}}}$$
Integral dari $$$\sec^{2}{\left(u \right)}$$$ adalah $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(u \right)} d u}}} = {\color{red}{\tan{\left(u \right)}}}$$
Ingat bahwa $$$u=\frac{x}{2}$$$:
$$\tan{\left({\color{red}{u}} \right)} = \tan{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}$$
Oleh karena itu,
$$\int{\frac{1}{\cos{\left(x \right)} + 1} d x} = \tan{\left(\frac{x}{2} \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{\cos{\left(x \right)} + 1} d x} = \tan{\left(\frac{x}{2} \right)}+C$$
Jawaban
$$$\int \frac{1}{\cos{\left(x \right)} + 1}\, dx = \tan{\left(\frac{x}{2} \right)} + C$$$A