Integral dari $$$- \csc{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(- \csc{\left(x \right)}\right)\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=-1$$$ dan $$$f{\left(x \right)} = \csc{\left(x \right)}$$$:
$${\color{red}{\int{\left(- \csc{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\csc{\left(x \right)} d x}\right)}}$$
Tuliskan kembali kosekan sebagai $$$\csc\left(x\right)=\frac{1}{\sin\left(x\right)}$$$:
$$- {\color{red}{\int{\csc{\left(x \right)} d x}}} = - {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}$$
Tulis ulang sinus menggunakan rumus sudut ganda $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$$- {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = - {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
Kalikan pembilang dan penyebut dengan $$$\sec^2\left(\frac{x}{2} \right)$$$:
$$- {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = - {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
Misalkan $$$u=\tan{\left(\frac{x}{2} \right)}$$$.
Kemudian $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.
Integralnya menjadi
$$- {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = - {\color{red}{\int{\frac{1}{u} d u}}}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ingat bahwa $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)}$$
Oleh karena itu,
$$\int{\left(- \csc{\left(x \right)}\right)d x} = - \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\left(- \csc{\left(x \right)}\right)d x} = - \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}+C$$
Jawaban
$$$\int \left(- \csc{\left(x \right)}\right)\, dx = - \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) + C$$$A