Integral dari $$$\sin{\left(\sqrt{x} \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sin{\left(\sqrt{x} \right)}\, dx$$$.
Solusi
Misalkan $$$u=\sqrt{x}$$$.
Kemudian $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Jadi,
$${\color{red}{\int{\sin{\left(\sqrt{x} \right)} d x}}} = {\color{red}{\int{2 u \sin{\left(u \right)} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=2$$$ dan $$$f{\left(u \right)} = u \sin{\left(u \right)}$$$:
$${\color{red}{\int{2 u \sin{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{u \sin{\left(u \right)} d u}\right)}}$$
Untuk integral $$$\int{u \sin{\left(u \right)} d u}$$$, gunakan integrasi parsial $$$\int \operatorname{w} \operatorname{dv} = \operatorname{w}\operatorname{v} - \int \operatorname{v} \operatorname{dw}$$$.
Misalkan $$$\operatorname{w}=u$$$ dan $$$\operatorname{dv}=\sin{\left(u \right)} du$$$.
Maka $$$\operatorname{dw}=\left(u\right)^{\prime }du=1 du$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{\sin{\left(u \right)} d u}=- \cos{\left(u \right)}$$$ (langkah-langkah dapat dilihat di »).
Dengan demikian,
$$2 {\color{red}{\int{u \sin{\left(u \right)} d u}}}=2 {\color{red}{\left(u \cdot \left(- \cos{\left(u \right)}\right)-\int{\left(- \cos{\left(u \right)}\right) \cdot 1 d u}\right)}}=2 {\color{red}{\left(- u \cos{\left(u \right)} - \int{\left(- \cos{\left(u \right)}\right)d u}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- 2 u \cos{\left(u \right)} - 2 {\color{red}{\int{\left(- \cos{\left(u \right)}\right)d u}}} = - 2 u \cos{\left(u \right)} - 2 {\color{red}{\left(- \int{\cos{\left(u \right)} d u}\right)}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- 2 u \cos{\left(u \right)} + 2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = - 2 u \cos{\left(u \right)} + 2 {\color{red}{\sin{\left(u \right)}}}$$
Ingat bahwa $$$u=\sqrt{x}$$$:
$$2 \sin{\left({\color{red}{u}} \right)} - 2 {\color{red}{u}} \cos{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\sqrt{x}}} \right)} - 2 {\color{red}{\sqrt{x}}} \cos{\left({\color{red}{\sqrt{x}}} \right)}$$
Oleh karena itu,
$$\int{\sin{\left(\sqrt{x} \right)} d x} = - 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}$$
Tambahkan konstanta integrasi:
$$\int{\sin{\left(\sqrt{x} \right)} d x} = - 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}+C$$
Jawaban
$$$\int \sin{\left(\sqrt{x} \right)}\, dx = \left(- 2 \sqrt{x} \cos{\left(\sqrt{x} \right)} + 2 \sin{\left(\sqrt{x} \right)}\right) + C$$$A