Integral dari $$$_1 x^{11}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int _1 x^{11}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=_1$$$ dan $$$f{\left(x \right)} = x^{11}$$$:
$${\color{red}{\int{_1 x^{11} d x}}} = {\color{red}{_1 \int{x^{11} d x}}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=11$$$:
$$_1 {\color{red}{\int{x^{11} d x}}}=_1 {\color{red}{\frac{x^{1 + 11}}{1 + 11}}}=_1 {\color{red}{\left(\frac{x^{12}}{12}\right)}}$$
Oleh karena itu,
$$\int{_1 x^{11} d x} = \frac{_1 x^{12}}{12}$$
Tambahkan konstanta integrasi:
$$\int{_1 x^{11} d x} = \frac{_1 x^{12}}{12}+C$$
Jawaban
$$$\int _1 x^{11}\, dx = \frac{_1 x^{12}}{12} + C$$$A