Integral dari $$$x^{218} \ln\left(x\right)$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int x^{218} \ln\left(x\right)\, dx$$$.
Solusi
Untuk integral $$$\int{x^{218} \ln{\left(x \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=\ln{\left(x \right)}$$$ dan $$$\operatorname{dv}=x^{218} dx$$$.
Maka $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{x^{218} d x}=\frac{x^{219}}{219}$$$ (langkah-langkah dapat dilihat di »).
Integralnya menjadi
$${\color{red}{\int{x^{218} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{219}}{219}-\int{\frac{x^{219}}{219} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{219} \ln{\left(x \right)}}{219} - \int{\frac{x^{218}}{219} d x}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{219}$$$ dan $$$f{\left(x \right)} = x^{218}$$$:
$$\frac{x^{219} \ln{\left(x \right)}}{219} - {\color{red}{\int{\frac{x^{218}}{219} d x}}} = \frac{x^{219} \ln{\left(x \right)}}{219} - {\color{red}{\left(\frac{\int{x^{218} d x}}{219}\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=218$$$:
$$\frac{x^{219} \ln{\left(x \right)}}{219} - \frac{{\color{red}{\int{x^{218} d x}}}}{219}=\frac{x^{219} \ln{\left(x \right)}}{219} - \frac{{\color{red}{\frac{x^{1 + 218}}{1 + 218}}}}{219}=\frac{x^{219} \ln{\left(x \right)}}{219} - \frac{{\color{red}{\left(\frac{x^{219}}{219}\right)}}}{219}$$
Oleh karena itu,
$$\int{x^{218} \ln{\left(x \right)} d x} = \frac{x^{219} \ln{\left(x \right)}}{219} - \frac{x^{219}}{47961}$$
Sederhanakan:
$$\int{x^{218} \ln{\left(x \right)} d x} = \frac{x^{219} \left(219 \ln{\left(x \right)} - 1\right)}{47961}$$
Tambahkan konstanta integrasi:
$$\int{x^{218} \ln{\left(x \right)} d x} = \frac{x^{219} \left(219 \ln{\left(x \right)} - 1\right)}{47961}+C$$
Jawaban
$$$\int x^{218} \ln\left(x\right)\, dx = \frac{x^{219} \left(219 \ln\left(x\right) - 1\right)}{47961} + C$$$A