Integral dari $$$\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{\tan{\left(x \right)}}{\sec{\left(x \right)}}\, dx$$$.

Solusi

Misalkan $$$u=\sec{\left(x \right)}$$$.

Kemudian $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.

Integral tersebut dapat ditulis ulang sebagai

$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=-2$$$:

$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$

Ingat bahwa $$$u=\sec{\left(x \right)}$$$:

$$- {\color{red}{u}}^{-1} = - {\color{red}{\sec{\left(x \right)}}}^{-1}$$

Oleh karena itu,

$$\int{\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}} d x} = - \frac{1}{\sec{\left(x \right)}}$$

Sederhanakan:

$$\int{\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}} d x} = - \cos{\left(x \right)}$$

Tambahkan konstanta integrasi:

$$\int{\frac{\tan{\left(x \right)}}{\sec{\left(x \right)}} d x} = - \cos{\left(x \right)}+C$$

Jawaban

$$$\int \frac{\tan{\left(x \right)}}{\sec{\left(x \right)}}\, dx = - \cos{\left(x \right)} + C$$$A


Please try a new game Rotatly