Integral dari $$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$.
Solusi
Tulis ulang integran:
$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
Misalkan $$$u=\sec{\left(x \right)}$$$.
Kemudian $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\int{1 d u}}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
Ingat bahwa $$$u=\sec{\left(x \right)}$$$:
$${\color{red}{u}} = {\color{red}{\sec{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}+C$$
Jawaban
$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \sec{\left(x \right)} + C$$$A