Integral dari $$$- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)\, dx$$$.

Fungsi trigonometri mengharapkan argumen dalam radian. Untuk memasukkan argumen dalam derajat, kalikan dengan pi/180, misalnya tulis 45° sebagai 45*pi/180, atau gunakan fungsi yang sesuai dengan menambahkan 'd', misalnya tulis sin(45°) sebagai sind(45).

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=- \tan{\left(1 \right)}$$$ dan $$$f{\left(x \right)} = \tan{\left(x \right)} \sec{\left(x \right)}$$$:

$${\color{red}{\int{\left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \tan{\left(1 \right)} \int{\tan{\left(x \right)} \sec{\left(x \right)} d x}\right)}}$$

Integral dari $$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ adalah $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:

$$- \tan{\left(1 \right)} {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = - \tan{\left(1 \right)} {\color{red}{\sec{\left(x \right)}}}$$

Oleh karena itu,

$$\int{\left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)d x} = - \tan{\left(1 \right)} \sec{\left(x \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)d x} = - \tan{\left(1 \right)} \sec{\left(x \right)}+C$$

Jawaban

$$$\int \left(- \tan{\left(1 \right)} \tan{\left(x \right)} \sec{\left(x \right)}\right)\, dx = - \tan{\left(1 \right)} \sec{\left(x \right)} + C$$$A


Please try a new game Rotatly