Integral dari $$$\tan{\left(2 x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\tan{\left(2 x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \tan{\left(2 x \right)}\, dx$$$.

Solusi

Misalkan $$$u=2 x$$$.

Kemudian $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{2}$$$.

Integral tersebut dapat ditulis ulang sebagai

$${\color{red}{\int{\tan{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\tan{\left(u \right)}}{2} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \tan{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\tan{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\tan{\left(u \right)} d u}}{2}\right)}}$$

Tulis ulang tangen sebagai $$$\tan\left( u \right)=\frac{\sin\left( u \right)}{\cos\left( u \right)}$$$:

$$\frac{{\color{red}{\int{\tan{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}}{2}$$

Misalkan $$$v=\cos{\left(u \right)}$$$.

Kemudian $$$dv=\left(\cos{\left(u \right)}\right)^{\prime }du = - \sin{\left(u \right)} du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sin{\left(u \right)} du = - dv$$$.

Integral tersebut dapat ditulis ulang sebagai

$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\cos{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}}{2}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ dengan $$$c=-1$$$ dan $$$f{\left(v \right)} = \frac{1}{v}$$$:

$$\frac{{\color{red}{\int{\left(- \frac{1}{v}\right)d v}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{v} d v}\right)}}}{2}$$

Integral dari $$$\frac{1}{v}$$$ adalah $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Ingat bahwa $$$v=\cos{\left(u \right)}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(u \right)}}}}\right| \right)}}{2}$$

Ingat bahwa $$$u=2 x$$$:

$$- \frac{\ln{\left(\left|{\cos{\left({\color{red}{u}} \right)}}\right| \right)}}{2} = - \frac{\ln{\left(\left|{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}\right| \right)}}{2}$$

Oleh karena itu,

$$\int{\tan{\left(2 x \right)} d x} = - \frac{\ln{\left(\left|{\cos{\left(2 x \right)}}\right| \right)}}{2}$$

Tambahkan konstanta integrasi:

$$\int{\tan{\left(2 x \right)} d x} = - \frac{\ln{\left(\left|{\cos{\left(2 x \right)}}\right| \right)}}{2}+C$$

Jawaban

$$$\int \tan{\left(2 x \right)}\, dx = - \frac{\ln\left(\left|{\cos{\left(2 x \right)}}\right|\right)}{2} + C$$$A


Please try a new game Rotatly