Integral dari $$$\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx$$$.
Solusi
Masukan ditulis ulang: $$$\int{\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}} d x}=\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}$$$.
Misalkan $$$u=\sqrt{x}$$$.
Kemudian $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}}} = {\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=2$$$ dan $$$f{\left(u \right)} = \frac{\sqrt{u^{2} - 1}}{u^{4}}$$$:
$${\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}} = {\color{red}{\left(2 \int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}\right)}}$$
Misalkan $$$u=\cosh{\left(v \right)}$$$.
Maka $$$du=\left(\cosh{\left(v \right)}\right)^{\prime }dv = \sinh{\left(v \right)} dv$$$ (langkah-langkah dapat dilihat »).
Selain itu, berlaku $$$v=\operatorname{acosh}{\left(u \right)}$$$.
Oleh karena itu,
$$$\frac{\sqrt{ u ^{2} - 1}}{ u ^{4}} = \frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}$$$
Gunakan identitas $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$:
$$$\frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}=\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}}$$$
Dengan asumsi bahwa $$$\sinh{\left( v \right)} \ge 0$$$, diperoleh sebagai berikut:
$$$\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}} = \frac{\sinh{\left( v \right)}}{\cosh^{4}{\left( v \right)}}$$$
Integral menjadi
$$2 {\color{red}{\int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}}} = 2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}}$$
Kalikan pembilang dan penyebut dengan $$$\cosh^{2}{\left( v \right)}$$$ dan ubah $$$\frac{\sinh^{2}{\left( v \right)}}{\cosh^{2}{\left( v \right)}}$$$ menjadi $$$\tanh^{2}{\left( v \right)}$$$:
$$2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}}$$
Misalkan $$$w=\tanh{\left(v \right)}$$$.
Kemudian $$$dw=\left(\tanh{\left(v \right)}\right)^{\prime }dv = \operatorname{sech}^{2}{\left(v \right)} dv$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\operatorname{sech}^{2}{\left(v \right)} dv = dw$$$.
Jadi,
$$2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{w^{2} d w}}}$$
Terapkan aturan pangkat $$$\int w^{n}\, dw = \frac{w^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:
$$2 {\color{red}{\int{w^{2} d w}}}=2 {\color{red}{\frac{w^{1 + 2}}{1 + 2}}}=2 {\color{red}{\left(\frac{w^{3}}{3}\right)}}$$
Ingat bahwa $$$w=\tanh{\left(v \right)}$$$:
$$\frac{2 {\color{red}{w}}^{3}}{3} = \frac{2 {\color{red}{\tanh{\left(v \right)}}}^{3}}{3}$$
Ingat bahwa $$$v=\operatorname{acosh}{\left(u \right)}$$$:
$$\frac{2 \tanh^{3}{\left({\color{red}{v}} \right)}}{3} = \frac{2 \tanh^{3}{\left({\color{red}{\operatorname{acosh}{\left(u \right)}}} \right)}}{3}$$
Ingat bahwa $$$u=\sqrt{x}$$$:
$$\frac{2 {\color{red}{u}}^{-3} \left(1 + {\color{red}{u}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{u}}\right)^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\sqrt{x}}}^{-3} \left(1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}}}{3}$$
Oleh karena itu,
$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}+C$$
Jawaban
$$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}} + C$$$A