Integral dari $$$\frac{\sin{\left(x \right)}}{x}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\sin{\left(x \right)}}{x}\, dx$$$.
Solusi
Integral ini (Integral Sinus) tidak memiliki bentuk tertutup:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{x} d x}}} = {\color{red}{\operatorname{Si}{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\frac{\sin{\left(x \right)}}{x} d x} = \operatorname{Si}{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\sin{\left(x \right)}}{x} d x} = \operatorname{Si}{\left(x \right)}+C$$
Jawaban
$$$\int \frac{\sin{\left(x \right)}}{x}\, dx = \operatorname{Si}{\left(x \right)} + C$$$A
Please try a new game Rotatly