Integral dari $$$\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}\, dx$$$.

Solusi

Expand the expression:

$${\color{red}{\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = {\color{red}{\int{\left(- 3 \sin^{3}{\left(x \right)} + 2 \sin{\left(x \right)}\right)d x}}}$$

Integralkan suku demi suku:

$${\color{red}{\int{\left(- 3 \sin^{3}{\left(x \right)} + 2 \sin{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{2 \sin{\left(x \right)} d x} - \int{3 \sin^{3}{\left(x \right)} d x}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=3$$$ dan $$$f{\left(x \right)} = \sin^{3}{\left(x \right)}$$$:

$$\int{2 \sin{\left(x \right)} d x} - {\color{red}{\int{3 \sin^{3}{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - {\color{red}{\left(3 \int{\sin^{3}{\left(x \right)} d x}\right)}}$$

Faktorkan satu sinus dan nyatakan sisanya dalam kosinus, menggunakan rumus $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ dengan $$$\alpha=x$$$:

$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\sin^{3}{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}}$$

Misalkan $$$u=\cos{\left(x \right)}$$$.

Kemudian $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sin{\left(x \right)} dx = - du$$$.

Integral tersebut dapat ditulis ulang sebagai

$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = 1 - u^{2}$$$:

$$\int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}$$

Integralkan suku demi suku:

$$\int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = \int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$

Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:

$$\int{2 \sin{\left(x \right)} d x} - 3 \int{u^{2} d u} + 3 {\color{red}{\int{1 d u}}} = \int{2 \sin{\left(x \right)} d x} - 3 \int{u^{2} d u} + 3 {\color{red}{u}}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\int{u^{2} d u}}}=3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=3 u + \int{2 \sin{\left(x \right)} d x} - 3 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Ingat bahwa $$$u=\cos{\left(x \right)}$$$:

$$\int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{u}} - {\color{red}{u}}^{3} = \int{2 \sin{\left(x \right)} d x} + 3 {\color{red}{\cos{\left(x \right)}}} - {\color{red}{\cos{\left(x \right)}}}^{3}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$- \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + {\color{red}{\int{2 \sin{\left(x \right)} d x}}} = - \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + {\color{red}{\left(2 \int{\sin{\left(x \right)} d x}\right)}}$$

Integral dari sinus adalah $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$- \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + 2 {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \cos^{3}{\left(x \right)} + 3 \cos{\left(x \right)} + 2 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Oleh karena itu,

$$\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x} = - \cos^{3}{\left(x \right)} + \cos{\left(x \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x} = - \cos^{3}{\left(x \right)} + \cos{\left(x \right)}+C$$

Jawaban

$$$\int \left(2 - 3 \sin^{2}{\left(x \right)}\right) \sin{\left(x \right)}\, dx = \left(- \cos^{3}{\left(x \right)} + \cos{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly