Integral dari $$$\sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx$$$.
Solusi
Tulis ulang integran menggunakan rumus sudut rangkap $$$\sin\left(x \right)\cos\left(x \right)=\frac{1}{2}\sin\left( 2 x \right)$$$:
$${\color{red}{\int{\sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\sin^{4}{\left(2 x \right)}}{16} d x}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{16}$$$ dan $$$f{\left(x \right)} = \sin^{4}{\left(2 x \right)}$$$:
$${\color{red}{\int{\frac{\sin^{4}{\left(2 x \right)}}{16} d x}}} = {\color{red}{\left(\frac{\int{\sin^{4}{\left(2 x \right)} d x}}{16}\right)}}$$
Terapkan rumus reduksi pangkat $$$\sin^{4}{\left(\alpha \right)} = - \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8}$$$ dengan $$$\alpha=2 x$$$:
$$\frac{{\color{red}{\int{\sin^{4}{\left(2 x \right)} d x}}}}{16} = \frac{{\color{red}{\int{\left(- \frac{\cos{\left(4 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{8} + \frac{3}{8}\right)d x}}}}{16}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{8}$$$ dan $$$f{\left(x \right)} = - 4 \cos{\left(4 x \right)} + \cos{\left(8 x \right)} + 3$$$:
$$\frac{{\color{red}{\int{\left(- \frac{\cos{\left(4 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{8} + \frac{3}{8}\right)d x}}}}{16} = \frac{{\color{red}{\left(\frac{\int{\left(- 4 \cos{\left(4 x \right)} + \cos{\left(8 x \right)} + 3\right)d x}}{8}\right)}}}{16}$$
Integralkan suku demi suku:
$$\frac{{\color{red}{\int{\left(- 4 \cos{\left(4 x \right)} + \cos{\left(8 x \right)} + 3\right)d x}}}}{128} = \frac{{\color{red}{\left(\int{3 d x} - \int{4 \cos{\left(4 x \right)} d x} + \int{\cos{\left(8 x \right)} d x}\right)}}}{128}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=3$$$:
$$- \frac{\int{4 \cos{\left(4 x \right)} d x}}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} + \frac{{\color{red}{\int{3 d x}}}}{128} = - \frac{\int{4 \cos{\left(4 x \right)} d x}}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} + \frac{{\color{red}{\left(3 x\right)}}}{128}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=4$$$ dan $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$:
$$\frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{{\color{red}{\int{4 \cos{\left(4 x \right)} d x}}}}{128} = \frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{{\color{red}{\left(4 \int{\cos{\left(4 x \right)} d x}\right)}}}{128}$$
Misalkan $$$u=4 x$$$.
Kemudian $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{4}$$$.
Integralnya menjadi
$$\frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{32} = \frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{32}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{4}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{32} = \frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{32}$$
Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{128} = \frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{{\color{red}{\sin{\left(u \right)}}}}{128}$$
Ingat bahwa $$$u=4 x$$$:
$$\frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{\sin{\left({\color{red}{u}} \right)}}{128} = \frac{3 x}{128} + \frac{\int{\cos{\left(8 x \right)} d x}}{128} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{128}$$
Misalkan $$$u=8 x$$$.
Kemudian $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{8}$$$.
Dengan demikian,
$$\frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{{\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{128} = \frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{128}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{8}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{128} = \frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{128}$$
Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{1024} = \frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{{\color{red}{\sin{\left(u \right)}}}}{1024}$$
Ingat bahwa $$$u=8 x$$$:
$$\frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{\sin{\left({\color{red}{u}} \right)}}{1024} = \frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{\sin{\left({\color{red}{\left(8 x\right)}} \right)}}{1024}$$
Oleh karena itu,
$$\int{\sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)} d x} = \frac{3 x}{128} - \frac{\sin{\left(4 x \right)}}{128} + \frac{\sin{\left(8 x \right)}}{1024}$$
Sederhanakan:
$$\int{\sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)} d x} = \frac{24 x - 8 \sin{\left(4 x \right)} + \sin{\left(8 x \right)}}{1024}$$
Tambahkan konstanta integrasi:
$$\int{\sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)} d x} = \frac{24 x - 8 \sin{\left(4 x \right)} + \sin{\left(8 x \right)}}{1024}+C$$
Jawaban
$$$\int \sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)}\, dx = \frac{24 x - 8 \sin{\left(4 x \right)} + \sin{\left(8 x \right)}}{1024} + C$$$A