Integral dari $$$\sin^{3}{\left(x \right)} \cos{\left(2 x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\sin^{3}{\left(x \right)} \cos{\left(2 x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \sin^{3}{\left(x \right)} \cos{\left(2 x \right)}\, dx$$$.

Solusi

Terapkan rumus reduksi pangkat $$$\sin^{3}{\left(\alpha \right)} = \frac{3 \sin{\left(\alpha \right)}}{4} - \frac{\sin{\left(3 \alpha \right)}}{4}$$$ dengan $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{3}{\left(x \right)} \cos{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \cos{\left(2 x \right)}}{4} d x}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{4}$$$ dan $$$f{\left(x \right)} = \left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \cos{\left(2 x \right)}$$$:

$${\color{red}{\int{\frac{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \cos{\left(2 x \right)}}{4} d x}}} = {\color{red}{\left(\frac{\int{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \cos{\left(2 x \right)} d x}}{4}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\left(3 \sin{\left(x \right)} - \sin{\left(3 x \right)}\right) \cos{\left(2 x \right)} d x}}}}{4} = \frac{{\color{red}{\int{\left(3 \sin{\left(x \right)} \cos{\left(2 x \right)} - \sin{\left(3 x \right)} \cos{\left(2 x \right)}\right)d x}}}}{4}$$

Integralkan suku demi suku:

$$\frac{{\color{red}{\int{\left(3 \sin{\left(x \right)} \cos{\left(2 x \right)} - \sin{\left(3 x \right)} \cos{\left(2 x \right)}\right)d x}}}}{4} = \frac{{\color{red}{\left(\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x} - \int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}\right)}}}{4}$$

Tulis ulang integran menggunakan rumus $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ dengan $$$\alpha=3 x$$$ dan $$$\beta=2 x$$$:

$$\frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(2 x \right)} d x}}}}{4} = \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{4}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \sin{\left(x \right)} + \sin{\left(5 x \right)}$$$:

$$\frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)}}{2} + \frac{\sin{\left(5 x \right)}}{2}\right)d x}}}}{4} = \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}{2}\right)}}}{4}$$

Integralkan suku demi suku:

$$\frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\left(\sin{\left(x \right)} + \sin{\left(5 x \right)}\right)d x}}}}{8} = \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(\int{\sin{\left(x \right)} d x} + \int{\sin{\left(5 x \right)} d x}\right)}}}{8}$$

Integral dari sinus adalah $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{\int{\sin{\left(5 x \right)} d x}}{8} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{8} = \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{\int{\sin{\left(5 x \right)} d x}}{8} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{8}$$

Misalkan $$$u=5 x$$$.

Kemudian $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{5}$$$.

Integral tersebut dapat ditulis ulang sebagai

$$\frac{\cos{\left(x \right)}}{8} + \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{8} = \frac{\cos{\left(x \right)}}{8} + \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{8}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{5}$$$ dan $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{\cos{\left(x \right)}}{8} + \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{8} = \frac{\cos{\left(x \right)}}{8} + \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{8}$$

Integral dari sinus adalah $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{\cos{\left(x \right)}}{8} + \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{40} = \frac{\cos{\left(x \right)}}{8} + \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{40}$$

Ingat bahwa $$$u=5 x$$$:

$$\frac{\cos{\left(x \right)}}{8} + \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} + \frac{\cos{\left({\color{red}{u}} \right)}}{40} = \frac{\cos{\left(x \right)}}{8} + \frac{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}{4} + \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{40}$$

Tulis ulang $$$\sin\left(x \right)\cos\left(2 x \right)$$$ menggunakan rumus $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ dengan $$$\alpha=x$$$ dan $$$\beta=2 x$$$:

$$\frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\int{3 \sin{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{4} = \frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{2} + \frac{3 \sin{\left(3 x \right)}}{2}\right)d x}}}}{4}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = - 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}$$$:

$$\frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\int{\left(- \frac{3 \sin{\left(x \right)}}{2} + \frac{3 \sin{\left(3 x \right)}}{2}\right)d x}}}}{4} = \frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\left(\frac{\int{\left(- 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}\right)d x}}{2}\right)}}}{4}$$

Integralkan suku demi suku:

$$\frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\int{\left(- 3 \sin{\left(x \right)} + 3 \sin{\left(3 x \right)}\right)d x}}}}{8} = \frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\left(- \int{3 \sin{\left(x \right)} d x} + \int{3 \sin{\left(3 x \right)} d x}\right)}}}{8}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=3$$$ dan $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$\frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{\int{3 \sin{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{3 \sin{\left(x \right)} d x}}}}{8} = \frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{\int{3 \sin{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\left(3 \int{\sin{\left(x \right)} d x}\right)}}}{8}$$

Integral dari sinus adalah $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{\int{3 \sin{\left(3 x \right)} d x}}{8} - \frac{3 {\color{red}{\int{\sin{\left(x \right)} d x}}}}{8} = \frac{\cos{\left(x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40} + \frac{\int{3 \sin{\left(3 x \right)} d x}}{8} - \frac{3 {\color{red}{\left(- \cos{\left(x \right)}\right)}}}{8}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=3$$$ dan $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$:

$$\frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\int{3 \sin{\left(3 x \right)} d x}}}}{8} = \frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\left(3 \int{\sin{\left(3 x \right)} d x}\right)}}}{8}$$

Misalkan $$$u=3 x$$$.

Kemudian $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{3}$$$.

Dengan demikian,

$$\frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} + \frac{3 {\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{8} = \frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} + \frac{3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{8}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{3}$$$ dan $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} + \frac{3 {\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{8} = \frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} + \frac{3 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{8}$$

Integral dari sinus adalah $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$

Ingat bahwa $$$u=3 x$$$:

$$\frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{\cos{\left(x \right)}}{2} + \frac{\cos{\left(5 x \right)}}{40} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{8}$$

Oleh karena itu,

$$\int{\sin^{3}{\left(x \right)} \cos{\left(2 x \right)} d x} = \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40}$$

Tambahkan konstanta integrasi:

$$\int{\sin^{3}{\left(x \right)} \cos{\left(2 x \right)} d x} = \frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40}+C$$

Jawaban

$$$\int \sin^{3}{\left(x \right)} \cos{\left(2 x \right)}\, dx = \left(\frac{\cos{\left(x \right)}}{2} - \frac{\cos{\left(3 x \right)}}{8} + \frac{\cos{\left(5 x \right)}}{40}\right) + C$$$A


Please try a new game Rotatly