Integral dari $$$i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}$$$ terhadap $$$x$$$

Kalkulator akan menemukan integral/antiturunan dari $$$i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}$$$ terhadap $$$x$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx$$$.

Solusi

Terapkan rumus reduksi pangkat $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ dengan $$$\alpha=2 x$$$:

$${\color{red}{\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{i n t \left(\cos{\left(4 x \right)} + 1\right) \sin^{2}{\left(2 x \right)}}{2} d x}}}$$

Terapkan rumus reduksi pangkat $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ dengan $$$\alpha=2 x$$$:

$${\color{red}{\int{\frac{i n t \left(\cos{\left(4 x \right)} + 1\right) \sin^{2}{\left(2 x \right)}}{2} d x}}} = {\color{red}{\int{\frac{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)}{4} d x}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{4}$$$ dan $$$f{\left(x \right)} = i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)$$$:

$${\color{red}{\int{\frac{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right)}{4} d x}}} = {\color{red}{\left(\frac{\int{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right) d x}}{4}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{i n t \left(1 - \cos{\left(4 x \right)}\right) \left(\cos{\left(4 x \right)} + 1\right) d x}}}}{4} = \frac{{\color{red}{\int{\left(- i n t \cos^{2}{\left(4 x \right)} + i n t\right)d x}}}}{4}$$

Integralkan suku demi suku:

$$\frac{{\color{red}{\int{\left(- i n t \cos^{2}{\left(4 x \right)} + i n t\right)d x}}}}{4} = \frac{{\color{red}{\left(\int{i n t d x} - \int{i n t \cos^{2}{\left(4 x \right)} d x}\right)}}}{4}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=i n t$$$:

$$- \frac{\int{i n t \cos^{2}{\left(4 x \right)} d x}}{4} + \frac{{\color{red}{\int{i n t d x}}}}{4} = - \frac{\int{i n t \cos^{2}{\left(4 x \right)} d x}}{4} + \frac{{\color{red}{i n t x}}}{4}$$

Terapkan rumus reduksi pangkat $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ dengan $$$\alpha=4 x$$$:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{i n t \cos^{2}{\left(4 x \right)} d x}}}}{4} = \frac{i n t x}{4} - \frac{{\color{red}{\int{\frac{i n t \left(\cos{\left(8 x \right)} + 1\right)}{2} d x}}}}{4}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = i n t \left(\cos{\left(8 x \right)} + 1\right)$$$:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{\frac{i n t \left(\cos{\left(8 x \right)} + 1\right)}{2} d x}}}}{4} = \frac{i n t x}{4} - \frac{{\color{red}{\left(\frac{\int{i n t \left(\cos{\left(8 x \right)} + 1\right) d x}}{2}\right)}}}{4}$$

Expand the expression:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{i n t \left(\cos{\left(8 x \right)} + 1\right) d x}}}}{8} = \frac{i n t x}{4} - \frac{{\color{red}{\int{\left(i n t \cos{\left(8 x \right)} + i n t\right)d x}}}}{8}$$

Integralkan suku demi suku:

$$\frac{i n t x}{4} - \frac{{\color{red}{\int{\left(i n t \cos{\left(8 x \right)} + i n t\right)d x}}}}{8} = \frac{i n t x}{4} - \frac{{\color{red}{\left(\int{i n t d x} + \int{i n t \cos{\left(8 x \right)} d x}\right)}}}{8}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=i n t$$$:

$$\frac{i n t x}{4} - \frac{\int{i n t \cos{\left(8 x \right)} d x}}{8} - \frac{{\color{red}{\int{i n t d x}}}}{8} = \frac{i n t x}{4} - \frac{\int{i n t \cos{\left(8 x \right)} d x}}{8} - \frac{{\color{red}{i n t x}}}{8}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=i n t$$$ dan $$$f{\left(x \right)} = \cos{\left(8 x \right)}$$$:

$$\frac{i n t x}{8} - \frac{{\color{red}{\int{i n t \cos{\left(8 x \right)} d x}}}}{8} = \frac{i n t x}{8} - \frac{{\color{red}{i n t \int{\cos{\left(8 x \right)} d x}}}}{8}$$

Misalkan $$$u=8 x$$$.

Kemudian $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{8}$$$.

Integralnya menjadi

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{8} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{8}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{8}$$

Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{i n t x}{8} - \frac{i n t {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{i n t x}{8} - \frac{i n t {\color{red}{\sin{\left(u \right)}}}}{64}$$

Ingat bahwa $$$u=8 x$$$:

$$\frac{i n t x}{8} - \frac{i n t \sin{\left({\color{red}{u}} \right)}}{64} = \frac{i n t x}{8} - \frac{i n t \sin{\left({\color{red}{\left(8 x\right)}} \right)}}{64}$$

Oleh karena itu,

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t x}{8} - \frac{i n t \sin{\left(8 x \right)}}{64}$$

Sederhanakan:

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64}$$

Tambahkan konstanta integrasi:

$$\int{i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)} d x} = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64}+C$$

Jawaban

$$$\int i n t \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}\, dx = \frac{i n t \left(8 x - \sin{\left(8 x \right)}\right)}{64} + C$$$A


Please try a new game Rotatly