Integral dari $$$\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx$$$.
Solusi
Misalkan $$$u=\sin{\left(x \right)}$$$.
Kemudian $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\cos{\left(x \right)} dx = du$$$.
Jadi,
$${\color{red}{\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{\sin{\left(u \right)} d u}}}$$
Integral dari sinus adalah $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Ingat bahwa $$$u=\sin{\left(x \right)}$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\sin{\left(x \right)}}} \right)}$$
Oleh karena itu,
$$\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x} = - \cos{\left(\sin{\left(x \right)} \right)}$$
Tambahkan konstanta integrasi:
$$\int{\sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} d x} = - \cos{\left(\sin{\left(x \right)} \right)}+C$$
Jawaban
$$$\int \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}\, dx = - \cos{\left(\sin{\left(x \right)} \right)} + C$$$A