Integral dari $$$\pi^{x}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \pi^{x}\, dx$$$.
Solusi
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\pi$$$:
$${\color{red}{\int{\pi^{x} d x}}} = {\color{red}{\frac{\pi^{x}}{\ln{\left(\pi \right)}}}}$$
Oleh karena itu,
$$\int{\pi^{x} d x} = \frac{\pi^{x}}{\ln{\left(\pi \right)}}$$
Tambahkan konstanta integrasi:
$$\int{\pi^{x} d x} = \frac{\pi^{x}}{\ln{\left(\pi \right)}}+C$$
Jawaban
$$$\int \pi^{x}\, dx = \frac{\pi^{x}}{\ln\left(\pi\right)} + C$$$A
Please try a new game Rotatly