Integral dari $$$\ln\left(\frac{x^{n}}{x}\right)$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \ln\left(\frac{x^{n}}{x}\right)\, dx$$$.
Solusi
Masukan ditulis ulang: $$$\int{\ln{\left(\frac{x^{n}}{x} \right)} d x}=\int{\left(n - 1\right) \ln{\left(x \right)} d x}$$$.
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=n - 1$$$ dan $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$${\color{red}{\int{\left(n - 1\right) \ln{\left(x \right)} d x}}} = {\color{red}{\left(n - 1\right) \int{\ln{\left(x \right)} d x}}}$$
Untuk integral $$$\int{\ln{\left(x \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=\ln{\left(x \right)}$$$ dan $$$\operatorname{dv}=dx$$$.
Maka $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{1 d x}=x$$$ (langkah-langkah dapat dilihat di »).
Integral tersebut dapat ditulis ulang sebagai
$$\left(n - 1\right) {\color{red}{\int{\ln{\left(x \right)} d x}}}=\left(n - 1\right) {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=\left(n - 1\right) {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:
$$\left(n - 1\right) \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right) = \left(n - 1\right) \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)$$
Oleh karena itu,
$$\int{\left(n - 1\right) \ln{\left(x \right)} d x} = \left(n - 1\right) \left(x \ln{\left(x \right)} - x\right)$$
Sederhanakan:
$$\int{\left(n - 1\right) \ln{\left(x \right)} d x} = x \left(n - 1\right) \left(\ln{\left(x \right)} - 1\right)$$
Tambahkan konstanta integrasi:
$$\int{\left(n - 1\right) \ln{\left(x \right)} d x} = x \left(n - 1\right) \left(\ln{\left(x \right)} - 1\right)+C$$
Jawaban
$$$\int \ln\left(\frac{x^{n}}{x}\right)\, dx = x \left(n - 1\right) \left(\ln\left(x\right) - 1\right) + C$$$A