Integral dari $$$\frac{\ln\left(u\right)}{u}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\ln\left(u\right)}{u}\, du$$$.
Solusi
Misalkan $$$v=\ln{\left(u \right)}$$$.
Kemudian $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{du}{u} = dv$$$.
Integralnya menjadi
$${\color{red}{\int{\frac{\ln{\left(u \right)}}{u} d u}}} = {\color{red}{\int{v d v}}}$$
Terapkan aturan pangkat $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$${\color{red}{\int{v d v}}}={\color{red}{\frac{v^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{v^{2}}{2}\right)}}$$
Ingat bahwa $$$v=\ln{\left(u \right)}$$$:
$$\frac{{\color{red}{v}}^{2}}{2} = \frac{{\color{red}{\ln{\left(u \right)}}}^{2}}{2}$$
Oleh karena itu,
$$\int{\frac{\ln{\left(u \right)}}{u} d u} = \frac{\ln{\left(u \right)}^{2}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\ln{\left(u \right)}}{u} d u} = \frac{\ln{\left(u \right)}^{2}}{2}+C$$
Jawaban
$$$\int \frac{\ln\left(u\right)}{u}\, du = \frac{\ln^{2}\left(u\right)}{2} + C$$$A