Integral dari $$$\frac{\ln\left(\ln\left(x\right)\right)}{x \ln\left(x\right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\ln\left(\ln\left(x\right)\right)}{x \ln\left(x\right)}\, dx$$$.
Solusi
Misalkan $$$u=\ln{\left(x \right)}$$$.
Kemudian $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{x} = du$$$.
Dengan demikian,
$${\color{red}{\int{\frac{\ln{\left(\ln{\left(x \right)} \right)}}{x \ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{u} d u}}}$$
Misalkan $$$v=\ln{\left(u \right)}$$$.
Kemudian $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{du}{u} = dv$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\frac{\ln{\left(u \right)}}{u} d u}}} = {\color{red}{\int{v d v}}}$$
Terapkan aturan pangkat $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$${\color{red}{\int{v d v}}}={\color{red}{\frac{v^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{v^{2}}{2}\right)}}$$
Ingat bahwa $$$v=\ln{\left(u \right)}$$$:
$$\frac{{\color{red}{v}}^{2}}{2} = \frac{{\color{red}{\ln{\left(u \right)}}}^{2}}{2}$$
Ingat bahwa $$$u=\ln{\left(x \right)}$$$:
$$\frac{\ln{\left({\color{red}{u}} \right)}^{2}}{2} = \frac{\ln{\left({\color{red}{\ln{\left(x \right)}}} \right)}^{2}}{2}$$
Oleh karena itu,
$$\int{\frac{\ln{\left(\ln{\left(x \right)} \right)}}{x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\ln{\left(x \right)} \right)}^{2}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\ln{\left(\ln{\left(x \right)} \right)}}{x \ln{\left(x \right)}} d x} = \frac{\ln{\left(\ln{\left(x \right)} \right)}^{2}}{2}+C$$
Jawaban
$$$\int \frac{\ln\left(\ln\left(x\right)\right)}{x \ln\left(x\right)}\, dx = \frac{\ln^{2}\left(\ln\left(x\right)\right)}{2} + C$$$A