Integral dari $$$\eta n - x^{3}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(\eta n - x^{3}\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(\eta n - x^{3}\right)d x}}} = {\color{red}{\left(- \int{x^{3} d x} + \int{\eta n d x}\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=3$$$:
$$\int{\eta n d x} - {\color{red}{\int{x^{3} d x}}}=\int{\eta n d x} - {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=\int{\eta n d x} - {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=\eta n$$$:
$$- \frac{x^{4}}{4} + {\color{red}{\int{\eta n d x}}} = - \frac{x^{4}}{4} + {\color{red}{\eta n x}}$$
Oleh karena itu,
$$\int{\left(\eta n - x^{3}\right)d x} = \eta n x - \frac{x^{4}}{4}$$
Sederhanakan:
$$\int{\left(\eta n - x^{3}\right)d x} = x \left(\eta n - \frac{x^{3}}{4}\right)$$
Tambahkan konstanta integrasi:
$$\int{\left(\eta n - x^{3}\right)d x} = x \left(\eta n - \frac{x^{3}}{4}\right)+C$$
Jawaban
$$$\int \left(\eta n - x^{3}\right)\, dx = x \left(\eta n - \frac{x^{3}}{4}\right) + C$$$A