Integral dari $$$x e^{2} \cos{\left(2 x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$x e^{2} \cos{\left(2 x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int x e^{2} \cos{\left(2 x \right)}\, dx$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=e^{2}$$$ dan $$$f{\left(x \right)} = x \cos{\left(2 x \right)}$$$:

$${\color{red}{\int{x e^{2} \cos{\left(2 x \right)} d x}}} = {\color{red}{e^{2} \int{x \cos{\left(2 x \right)} d x}}}$$

Untuk integral $$$\int{x \cos{\left(2 x \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Misalkan $$$\operatorname{u}=x$$$ dan $$$\operatorname{dv}=\cos{\left(2 x \right)} dx$$$.

Maka $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{\cos{\left(2 x \right)} d x}=\frac{\sin{\left(2 x \right)}}{2}$$$ (langkah-langkah dapat dilihat di »).

Integralnya menjadi

$$e^{2} {\color{red}{\int{x \cos{\left(2 x \right)} d x}}}=e^{2} {\color{red}{\left(x \cdot \frac{\sin{\left(2 x \right)}}{2}-\int{\frac{\sin{\left(2 x \right)}}{2} \cdot 1 d x}\right)}}=e^{2} {\color{red}{\left(\frac{x \sin{\left(2 x \right)}}{2} - \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}\right)$$

Misalkan $$$u=2 x$$$.

Kemudian $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{2}$$$.

Jadi,

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}\right)$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}\right)$$

Integral dari sinus adalah $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}\right)$$

Ingat bahwa $$$u=2 x$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}\right)$$

Oleh karena itu,

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}\right) e^{2}$$

Sederhanakan:

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4}$$

Tambahkan konstanta integrasi:

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4}+C$$

Jawaban

$$$\int x e^{2} \cos{\left(2 x \right)}\, dx = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4} + C$$$A


Please try a new game Rotatly