Integral dari $$$\frac{e}{\ln\left(x\right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{e}{\ln\left(x\right)}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=e$$$ dan $$$f{\left(x \right)} = \frac{1}{\ln{\left(x \right)}}$$$:
$${\color{red}{\int{\frac{e}{\ln{\left(x \right)}} d x}}} = {\color{red}{e \int{\frac{1}{\ln{\left(x \right)}} d x}}}$$
Integral ini (Integral Logaritmik) tidak memiliki bentuk tertutup:
$$e {\color{red}{\int{\frac{1}{\ln{\left(x \right)}} d x}}} = e {\color{red}{\operatorname{li}{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\frac{e}{\ln{\left(x \right)}} d x} = e \operatorname{li}{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{e}{\ln{\left(x \right)}} d x} = e \operatorname{li}{\left(x \right)}+C$$
Jawaban
$$$\int \frac{e}{\ln\left(x\right)}\, dx = e \operatorname{li}{\left(x \right)} + C$$$A