Integral dari $$$\frac{r}{a e^{2}}$$$ terhadap $$$a$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{r}{a e^{2}}$$$ terhadap $$$a$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{r}{a e^{2}}\, da$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ dengan $$$c=\frac{r}{e^{2}}$$$ dan $$$f{\left(a \right)} = \frac{1}{a}$$$:

$${\color{red}{\int{\frac{r}{a e^{2}} d a}}} = {\color{red}{\frac{r \int{\frac{1}{a} d a}}{e^{2}}}}$$

Integral dari $$$\frac{1}{a}$$$ adalah $$$\int{\frac{1}{a} d a} = \ln{\left(\left|{a}\right| \right)}$$$:

$$\frac{r {\color{red}{\int{\frac{1}{a} d a}}}}{e^{2}} = \frac{r {\color{red}{\ln{\left(\left|{a}\right| \right)}}}}{e^{2}}$$

Oleh karena itu,

$$\int{\frac{r}{a e^{2}} d a} = \frac{r \ln{\left(\left|{a}\right| \right)}}{e^{2}}$$

Tambahkan konstanta integrasi:

$$\int{\frac{r}{a e^{2}} d a} = \frac{r \ln{\left(\left|{a}\right| \right)}}{e^{2}}+C$$

Jawaban

$$$\int \frac{r}{a e^{2}}\, da = \frac{r \ln\left(\left|{a}\right|\right)}{e^{2}} + C$$$A


Please try a new game Rotatly