Integral dari $$$e^{\sqrt{33} \sqrt{x}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int e^{\sqrt{33} \sqrt{x}}\, dx$$$.
Solusi
Misalkan $$$u=\sqrt{33} \sqrt{x}$$$.
Kemudian $$$du=\left(\sqrt{33} \sqrt{x}\right)^{\prime }dx = \frac{\sqrt{33}}{2 \sqrt{x}} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{\sqrt{x}} = \frac{2 \sqrt{33} du}{33}$$$.
Integralnya menjadi
$${\color{red}{\int{e^{\sqrt{33} \sqrt{x}} d x}}} = {\color{red}{\int{\frac{2 u e^{u}}{33} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{2}{33}$$$ dan $$$f{\left(u \right)} = u e^{u}$$$:
$${\color{red}{\int{\frac{2 u e^{u}}{33} d u}}} = {\color{red}{\left(\frac{2 \int{u e^{u} d u}}{33}\right)}}$$
Untuk integral $$$\int{u e^{u} d u}$$$, gunakan integrasi parsial $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.
Misalkan $$$\operatorname{g}=u$$$ dan $$$\operatorname{dv}=e^{u} du$$$.
Maka $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (langkah-langkah dapat dilihat di »).
Jadi,
$$\frac{2 {\color{red}{\int{u e^{u} d u}}}}{33}=\frac{2 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{33}=\frac{2 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{33}$$
Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{2 u e^{u}}{33} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{33} = \frac{2 u e^{u}}{33} - \frac{2 {\color{red}{e^{u}}}}{33}$$
Ingat bahwa $$$u=\sqrt{33} \sqrt{x}$$$:
$$- \frac{2 e^{{\color{red}{u}}}}{33} + \frac{2 {\color{red}{u}} e^{{\color{red}{u}}}}{33} = - \frac{2 e^{{\color{red}{\sqrt{33} \sqrt{x}}}}}{33} + \frac{2 {\color{red}{\sqrt{33} \sqrt{x}}} e^{{\color{red}{\sqrt{33} \sqrt{x}}}}}{33}$$
Oleh karena itu,
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \sqrt{33} \sqrt{x} e^{\sqrt{33} \sqrt{x}}}{33} - \frac{2 e^{\sqrt{33} \sqrt{x}}}{33}$$
Sederhanakan:
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33}$$
Tambahkan konstanta integrasi:
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33}+C$$
Jawaban
$$$\int e^{\sqrt{33} \sqrt{x}}\, dx = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33} + C$$$A