Integral dari $$$a d e^{\frac{x^{2}}{a^{2}}}$$$ terhadap $$$x$$$

Kalkulator akan menemukan integral/antiturunan dari $$$a d e^{\frac{x^{2}}{a^{2}}}$$$ terhadap $$$x$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int a d e^{\frac{x^{2}}{a^{2}}}\, dx$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=a d$$$ dan $$$f{\left(x \right)} = e^{\frac{x^{2}}{a^{2}}}$$$:

$${\color{red}{\int{a d e^{\frac{x^{2}}{a^{2}}} d x}}} = {\color{red}{a d \int{e^{\frac{x^{2}}{a^{2}}} d x}}}$$

Misalkan $$$u=\frac{x}{\left|{a}\right|}$$$.

Kemudian $$$du=\left(\frac{x}{\left|{a}\right|}\right)^{\prime }dx = \frac{dx}{\left|{a}\right|}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \left|{a}\right| du$$$.

Oleh karena itu,

$$a d {\color{red}{\int{e^{\frac{x^{2}}{a^{2}}} d x}}} = a d {\color{red}{\int{e^{u^{2}} \left|{a}\right| d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\left|{a}\right|$$$ dan $$$f{\left(u \right)} = e^{u^{2}}$$$:

$$a d {\color{red}{\int{e^{u^{2}} \left|{a}\right| d u}}} = a d {\color{red}{\left|{a}\right| \int{e^{u^{2}} d u}}}$$

Integral ini (Fungsi Galat Imajiner) tidak memiliki bentuk tertutup:

$$a d \left|{a}\right| {\color{red}{\int{e^{u^{2}} d u}}} = a d \left|{a}\right| {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$

Ingat bahwa $$$u=\frac{x}{\left|{a}\right|}$$$:

$$\frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left({\color{red}{\frac{x}{\left|{a}\right|}}} \right)}}{2}$$

Oleh karena itu,

$$\int{a d e^{\frac{x^{2}}{a^{2}}} d x} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$

Tambahkan konstanta integrasi:

$$\int{a d e^{\frac{x^{2}}{a^{2}}} d x} = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}+C$$

Jawaban

$$$\int a d e^{\frac{x^{2}}{a^{2}}}\, dx = \frac{\sqrt{\pi} a d \left|{a}\right| \operatorname{erfi}{\left(\frac{x}{\left|{a}\right|} \right)}}{2} + C$$$A


Please try a new game Rotatly