Integral dari $$$e^{x} + e^{- x}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(e^{x} + e^{- x}\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(e^{x} + e^{- x}\right)d x}}} = {\color{red}{\left(\int{e^{- x} d x} + \int{e^{x} d x}\right)}}$$
Integral dari fungsi eksponensial adalah $$$\int{e^{x} d x} = e^{x}$$$:
$$\int{e^{- x} d x} + {\color{red}{\int{e^{x} d x}}} = \int{e^{- x} d x} + {\color{red}{e^{x}}}$$
Misalkan $$$u=- x$$$.
Kemudian $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = - du$$$.
Dengan demikian,
$$e^{x} + {\color{red}{\int{e^{- x} d x}}} = e^{x} + {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = e^{u}$$$:
$$e^{x} + {\color{red}{\int{\left(- e^{u}\right)d u}}} = e^{x} + {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:
$$e^{x} - {\color{red}{\int{e^{u} d u}}} = e^{x} - {\color{red}{e^{u}}}$$
Ingat bahwa $$$u=- x$$$:
$$e^{x} - e^{{\color{red}{u}}} = e^{x} - e^{{\color{red}{\left(- x\right)}}}$$
Oleh karena itu,
$$\int{\left(e^{x} + e^{- x}\right)d x} = e^{x} - e^{- x}$$
Sederhanakan:
$$\int{\left(e^{x} + e^{- x}\right)d x} = 2 \sinh{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\left(e^{x} + e^{- x}\right)d x} = 2 \sinh{\left(x \right)}+C$$
Jawaban
$$$\int \left(e^{x} + e^{- x}\right)\, dx = 2 \sinh{\left(x \right)} + C$$$A