Integral dari $$$\frac{1}{\sec{\left(v \right)}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{\sec{\left(v \right)}}\, dv$$$.
Solusi
Tulis ulang integran dalam bentuk kosinus:
$${\color{red}{\int{\frac{1}{\sec{\left(v \right)}} d v}}} = {\color{red}{\int{\cos{\left(v \right)} d v}}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$${\color{red}{\int{\cos{\left(v \right)} d v}}} = {\color{red}{\sin{\left(v \right)}}}$$
Oleh karena itu,
$$\int{\frac{1}{\sec{\left(v \right)}} d v} = \sin{\left(v \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{\sec{\left(v \right)}} d v} = \sin{\left(v \right)}+C$$
Jawaban
$$$\int \frac{1}{\sec{\left(v \right)}}\, dv = \sin{\left(v \right)} + C$$$A