Integral dari $$$- \sin{\left(x \right)} + \cos{\left(x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$- \sin{\left(x \right)} + \cos{\left(x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\sin{\left(x \right)} d x} + \int{\cos{\left(x \right)} d x}\right)}}$$

Integral dari sinus adalah $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\int{\cos{\left(x \right)} d x} - {\color{red}{\int{\sin{\left(x \right)} d x}}} = \int{\cos{\left(x \right)} d x} - {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Integral dari kosinus adalah $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$\cos{\left(x \right)} + {\color{red}{\int{\cos{\left(x \right)} d x}}} = \cos{\left(x \right)} + {\color{red}{\sin{\left(x \right)}}}$$

Oleh karena itu,

$$\int{\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)d x} = \sin{\left(x \right)} + \cos{\left(x \right)}$$

Sederhanakan:

$$\int{\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)d x} = \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)d x} = \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)}+C$$

Jawaban

$$$\int \left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)\, dx = \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)} + C$$$A


Please try a new game Rotatly