Integral dari $$$\cos^{2}{\left(3 x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \cos^{2}{\left(3 x \right)}\, dx$$$.
Solusi
Misalkan $$$u=3 x$$$.
Kemudian $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{3}$$$.
Jadi,
$${\color{red}{\int{\cos^{2}{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{3} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{3}$$$ dan $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\cos^{2}{\left(u \right)} d u}}{3}\right)}}$$
Terapkan rumus reduksi pangkat $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ dengan $$$\alpha= u $$$:
$$\frac{{\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{3}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:
$$\frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}}{3}$$
Integralkan suku demi suku:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{6} = \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{6}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:
$$\frac{\int{\cos{\left(2 u \right)} d u}}{6} + \frac{{\color{red}{\int{1 d u}}}}{6} = \frac{\int{\cos{\left(2 u \right)} d u}}{6} + \frac{{\color{red}{u}}}{6}$$
Misalkan $$$v=2 u$$$.
Kemudian $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = \frac{dv}{2}$$$.
Integralnya menjadi
$$\frac{u}{6} + \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{6} = \frac{u}{6} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{6}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{u}{6} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{6} = \frac{u}{6} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{6}$$
Integral dari kosinus adalah $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{u}{6} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{12} = \frac{u}{6} + \frac{{\color{red}{\sin{\left(v \right)}}}}{12}$$
Ingat bahwa $$$v=2 u$$$:
$$\frac{u}{6} + \frac{\sin{\left({\color{red}{v}} \right)}}{12} = \frac{u}{6} + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{12}$$
Ingat bahwa $$$u=3 x$$$:
$$\frac{\sin{\left(2 {\color{red}{u}} \right)}}{12} + \frac{{\color{red}{u}}}{6} = \frac{\sin{\left(2 {\color{red}{\left(3 x\right)}} \right)}}{12} + \frac{{\color{red}{\left(3 x\right)}}}{6}$$
Oleh karena itu,
$$\int{\cos^{2}{\left(3 x \right)} d x} = \frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}$$
Tambahkan konstanta integrasi:
$$\int{\cos^{2}{\left(3 x \right)} d x} = \frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}+C$$
Jawaban
$$$\int \cos^{2}{\left(3 x \right)}\, dx = \left(\frac{x}{2} + \frac{\sin{\left(6 x \right)}}{12}\right) + C$$$A