Integral dari $$$\frac{\cos{\left(u \right)}}{v}$$$ terhadap $$$u$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{\cos{\left(u \right)}}{v}\, du$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{v}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{v} d u}}} = {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{v}}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{v} = \frac{{\color{red}{\sin{\left(u \right)}}}}{v}$$
Oleh karena itu,
$$\int{\frac{\cos{\left(u \right)}}{v} d u} = \frac{\sin{\left(u \right)}}{v}$$
Tambahkan konstanta integrasi:
$$\int{\frac{\cos{\left(u \right)}}{v} d u} = \frac{\sin{\left(u \right)}}{v}+C$$
Jawaban
$$$\int \frac{\cos{\left(u \right)}}{v}\, du = \frac{\sin{\left(u \right)}}{v} + C$$$A