Integral dari $$$\cos{\left(\frac{u}{v} \right)}$$$ terhadap $$$u$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \cos{\left(\frac{u}{v} \right)}\, du$$$.
Solusi
Misalkan $$$w=\frac{u}{v}$$$.
Kemudian $$$dw=\left(\frac{u}{v}\right)^{\prime }du = \frac{du}{v}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = v dw$$$.
Dengan demikian,
$${\color{red}{\int{\cos{\left(\frac{u}{v} \right)} d u}}} = {\color{red}{\int{v \cos{\left(w \right)} d w}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ dengan $$$c=v$$$ dan $$$f{\left(w \right)} = \cos{\left(w \right)}$$$:
$${\color{red}{\int{v \cos{\left(w \right)} d w}}} = {\color{red}{v \int{\cos{\left(w \right)} d w}}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(w \right)} d w} = \sin{\left(w \right)}$$$:
$$v {\color{red}{\int{\cos{\left(w \right)} d w}}} = v {\color{red}{\sin{\left(w \right)}}}$$
Ingat bahwa $$$w=\frac{u}{v}$$$:
$$v \sin{\left({\color{red}{w}} \right)} = v \sin{\left({\color{red}{\frac{u}{v}}} \right)}$$
Oleh karena itu,
$$\int{\cos{\left(\frac{u}{v} \right)} d u} = v \sin{\left(\frac{u}{v} \right)}$$
Tambahkan konstanta integrasi:
$$\int{\cos{\left(\frac{u}{v} \right)} d u} = v \sin{\left(\frac{u}{v} \right)}+C$$
Jawaban
$$$\int \cos{\left(\frac{u}{v} \right)}\, du = v \sin{\left(\frac{u}{v} \right)} + C$$$A