Integral dari $$$\cos{\left(\frac{x^{2}}{18} \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \cos{\left(\frac{x^{2}}{18} \right)}\, dx$$$.
Solusi
Misalkan $$$u=\frac{\sqrt{2} x}{6}$$$.
Kemudian $$$du=\left(\frac{\sqrt{2} x}{6}\right)^{\prime }dx = \frac{\sqrt{2}}{6} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = 3 \sqrt{2} du$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\cos{\left(\frac{x^{2}}{18} \right)} d x}}} = {\color{red}{\int{3 \sqrt{2} \cos{\left(u^{2} \right)} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=3 \sqrt{2}$$$ dan $$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$:
$${\color{red}{\int{3 \sqrt{2} \cos{\left(u^{2} \right)} d u}}} = {\color{red}{\left(3 \sqrt{2} \int{\cos{\left(u^{2} \right)} d u}\right)}}$$
Integral ini (Integral Kosinus Fresnel) tidak memiliki bentuk tertutup:
$$3 \sqrt{2} {\color{red}{\int{\cos{\left(u^{2} \right)} d u}}} = 3 \sqrt{2} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}$$
Ingat bahwa $$$u=\frac{\sqrt{2} x}{6}$$$:
$$3 \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right) = 3 \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{2} x}{6}\right)}}}{\sqrt{\pi}}\right)$$
Oleh karena itu,
$$\int{\cos{\left(\frac{x^{2}}{18} \right)} d x} = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right)$$
Tambahkan konstanta integrasi:
$$\int{\cos{\left(\frac{x^{2}}{18} \right)} d x} = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right)+C$$
Jawaban
$$$\int \cos{\left(\frac{x^{2}}{18} \right)}\, dx = 3 \sqrt{\pi} C\left(\frac{x}{3 \sqrt{\pi}}\right) + C$$$A