Integral dari $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \operatorname{atan}{\left(\sqrt{x} \right)}\, dx$$$.

Solusi

Untuk integral $$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Misalkan $$$\operatorname{u}=\operatorname{atan}{\left(\sqrt{x} \right)}$$$ dan $$$\operatorname{dv}=dx$$$.

Maka $$$\operatorname{du}=\left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)^{\prime }dx=\frac{1}{2 \sqrt{x} \left(x + 1\right)} dx$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{1 d x}=x$$$ (langkah-langkah dapat dilihat di »).

Dengan demikian,

$${\color{red}{\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(\sqrt{x} \right)} \cdot x-\int{x \cdot \frac{1}{2 \sqrt{x} \left(x + 1\right)} d x}\right)}}={\color{red}{\left(x \operatorname{atan}{\left(\sqrt{x} \right)} - \int{\frac{\sqrt{x}}{2 x + 2} d x}\right)}}$$

Sederhanakan integran:

$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 x + 2} d x}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 \left(x + 1\right)} d x}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(x \right)} = \frac{\sqrt{x}}{x + 1}$$$:

$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 \left(x + 1\right)} d x}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\left(\frac{\int{\frac{\sqrt{x}}{x + 1} d x}}{2}\right)}}$$

Misalkan $$$u=\sqrt{x}$$$.

Kemudian $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

Dengan demikian,

$$x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{\sqrt{x}}{x + 1} d x}}}}{2} = x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}}{2}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=2$$$ dan $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:

$$x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}}{2} = x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\left(2 \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}}{2}$$

Tulis ulang dan pisahkan pecahannya:

$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integralkan suku demi suku:

$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:

$$x \operatorname{atan}{\left(\sqrt{x} \right)} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

Integral dari $$$\frac{1}{u^{2} + 1}$$$ adalah $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- u + x \operatorname{atan}{\left(\sqrt{x} \right)} + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + x \operatorname{atan}{\left(\sqrt{x} \right)} + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Ingat bahwa $$$u=\sqrt{x}$$$:

$$x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left({\color{red}{\sqrt{x}}} \right)} - {\color{red}{\sqrt{x}}}$$

Oleh karena itu,

$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}$$

Tambahkan konstanta integrasi:

$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}+C$$

Jawaban

$$$\int \operatorname{atan}{\left(\sqrt{x} \right)}\, dx = \left(- \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}\right) + C$$$A


Please try a new game Rotatly