Integral dari $$$a - x$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(a - x\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(a - x\right)d x}}} = {\color{red}{\left(\int{a d x} - \int{x d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=a$$$:
$$- \int{x d x} + {\color{red}{\int{a d x}}} = - \int{x d x} + {\color{red}{a x}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$$a x - {\color{red}{\int{x d x}}}=a x - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=a x - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Oleh karena itu,
$$\int{\left(a - x\right)d x} = a x - \frac{x^{2}}{2}$$
Sederhanakan:
$$\int{\left(a - x\right)d x} = \frac{x \left(2 a - x\right)}{2}$$
Tambahkan konstanta integrasi:
$$\int{\left(a - x\right)d x} = \frac{x \left(2 a - x\right)}{2}+C$$
Jawaban
$$$\int \left(a - x\right)\, dx = \frac{x \left(2 a - x\right)}{2} + C$$$A