Integral dari $$$a^{2} - x^{2}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(a^{2} - x^{2}\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(a^{2} - x^{2}\right)d x}}} = {\color{red}{\left(\int{a^{2} d x} - \int{x^{2} d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=a^{2}$$$:
$$- \int{x^{2} d x} + {\color{red}{\int{a^{2} d x}}} = - \int{x^{2} d x} + {\color{red}{a^{2} x}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:
$$a^{2} x - {\color{red}{\int{x^{2} d x}}}=a^{2} x - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=a^{2} x - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Oleh karena itu,
$$\int{\left(a^{2} - x^{2}\right)d x} = a^{2} x - \frac{x^{3}}{3}$$
Sederhanakan:
$$\int{\left(a^{2} - x^{2}\right)d x} = x \left(a^{2} - \frac{x^{2}}{3}\right)$$
Tambahkan konstanta integrasi:
$$\int{\left(a^{2} - x^{2}\right)d x} = x \left(a^{2} - \frac{x^{2}}{3}\right)+C$$
Jawaban
$$$\int \left(a^{2} - x^{2}\right)\, dx = x \left(a^{2} - \frac{x^{2}}{3}\right) + C$$$A