Integral dari $$$4 x - 3$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(4 x - 3\right)\, dx$$$.
Solusi
Integralkan suku demi suku:
$${\color{red}{\int{\left(4 x - 3\right)d x}}} = {\color{red}{\left(- \int{3 d x} + \int{4 x d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=3$$$:
$$\int{4 x d x} - {\color{red}{\int{3 d x}}} = \int{4 x d x} - {\color{red}{\left(3 x\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=4$$$ dan $$$f{\left(x \right)} = x$$$:
$$- 3 x + {\color{red}{\int{4 x d x}}} = - 3 x + {\color{red}{\left(4 \int{x d x}\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$$- 3 x + 4 {\color{red}{\int{x d x}}}=- 3 x + 4 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 3 x + 4 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Oleh karena itu,
$$\int{\left(4 x - 3\right)d x} = 2 x^{2} - 3 x$$
Sederhanakan:
$$\int{\left(4 x - 3\right)d x} = x \left(2 x - 3\right)$$
Tambahkan konstanta integrasi:
$$\int{\left(4 x - 3\right)d x} = x \left(2 x - 3\right)+C$$
Jawaban
$$$\int \left(4 x - 3\right)\, dx = x \left(2 x - 3\right) + C$$$A